Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.919
Filtrar
1.
Swiss Med Wkly ; 154: 3437, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579327

RESUMO

STUDY AIMS: Although non-toxigenic Vibrio cholerae lack the ctxAB genes encoding cholera toxin, they can cause diarrhoeal disease and outbreaks in humans. In Switzerland, V. cholerae is a notifiable pathogen and all clinical isolates are analysed at the National Reference Laboratory for Enteropathogenic Bacteria and Listeria. Up to 20 infections are reported annually. In this study, we investigated the population structure and genetic characteristics of non-toxigenic V. cholerae isolates collected over five years. METHODS:  V. cholerae isolates were serotyped and non-toxigenic isolates identified using a ctxA-specific PCR. Following Illumina whole-genome sequencing, genome assemblies were screened for virulence and antibiotic resistance genes. Phylogenetic analyses were performed in the context of 965 publicly available V. cholerae genomes. RESULTS: Out of 33 V. cholerae infections reported between January 2017 and January 2022 in Switzerland, 31 were caused by ctxA-negative isolates. These non-toxigenic isolates originated from gastrointestinal (n = 29) or extraintestinal (n = 2) sites. They were phylogenetically diverse and belonged to 29 distinct sequence types. Two isolates were allocated to the lineage L3b, a ctxAB-negative but tcpA-positive clade previously associated with regional outbreaks. The remaining 29 isolates were placed in lineage L4, which is associated with environmental strains. Genes or mutations associated with reduced susceptibility to the first-line antibiotics fluoroquinolones and tetracyclines were identified in 11 and 3 isolates, respectively. One isolate was predicted to be multidrug resistant. CONCLUSIONS:  V. cholerae infections in Switzerland are rare and predominantly caused by lowly virulent ctxAB-negative and tcpA-negative strains. As V. cholerae is not endemic in Switzerland, cases are assumed to be acquired predominantly during travel. This assumption was supported by the phylogenetic diversity of the analysed isolates.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/epidemiologia , Cólera/microbiologia , Estudos Transversais , Filogenia , Suíça/epidemiologia , Genômica
2.
PLoS Genet ; 20(4): e1011234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598601

RESUMO

Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.


Assuntos
Carboxipeptidases , Parede Celular , Endopeptidases , Peptidoglicano , Vibrio cholerae , Peptidoglicano/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Epistasia Genética , Mutação
3.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449342

RESUMO

Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Humanos , Cólera/diagnóstico , Cólera/epidemiologia , Cólera/prevenção & controle , Vibrio cholerae/genética , Bacteriófagos/fisiologia , Filogenia , Toxina da Cólera/genética , Toxina da Cólera/metabolismo
4.
Infect Genet Evol ; 120: 105587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518953

RESUMO

Non-O1/non-O139 Vibrio cholerae (NOVC) are ubiquitous in aquatic ecosystems. In rare cases, they can cause intestinal and extra-intestinal infections in human. This ability is associated with various virulence factors. The presence of NOVC in German North Sea and Baltic Sea was observed in previous studies. However, data on virulence characteristics are still scarce. Therefore, this work aimed to investigating the virulence potential of NOVC isolated in these two regions. In total, 31 NOVC strains were collected and subjected to whole genome sequencing. In silico analysis of the pathogenic potential was performed based on the detection of genes involved in colonization and virulence. Phenotypic assays, including biofilm formation, mobility and human serum resistance assays were applied for validation. Associated toxin genes (hlyA, rtxA, chxA and stn), pathogenicity islands (Vibrio pathogenicity island 2 (VPI-II) and Vibrio seventh pathogenicity island 2 (VSP-II)) and secretion systems (Type II, III and VI secretion system) were observed. A maximum likelihood analysis from shared core genes revealed a close relationship between clinical NOVCs published in NCBI and environmental strains from this study. NOVC strains are more mobile at 37 °C than at 25 °C, and 68% of the NOVC strains could form strong biofilms at both temperatures. All tested strains were able to lyse erythrocytes from both human and sheep blood. Additionally, one strain could survive up to 60% and seven strains up to 40% human serum at 37 °C. Overall, the genetic virulence profile as well as the phenotypic virulence characteristics of the investigated NOVC from the German North Sea and Baltic Sea suggest potential human pathogenicity.


Assuntos
Vibrio cholerae não O1 , Fatores de Virulência , Fatores de Virulência/genética , Humanos , Virulência/genética , Vibrio cholerae não O1/genética , Vibrio cholerae não O1/patogenicidade , Vibrio cholerae não O1/isolamento & purificação , Alemanha , Ilhas Genômicas/genética , Biofilmes/crescimento & desenvolvimento , Filogenia , Mar do Norte , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Vibrio cholerae/classificação , Cólera/microbiologia , Animais , Sequenciamento Completo do Genoma
5.
Mol Biol Rep ; 51(1): 409, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461219

RESUMO

BACKGROUND: This is a unique and novel study delineating the genotyping and subsequent prediction of AMR determinants of Vibrio cholerae revealing the potential of contemporary strains to serve as precursors of severe AMR crisis in cholera. METHODS AND RESULTS: Genotyping of representative strains, VC1 and VC2 was undertaken to characterize antimicrobial resistance genes (ARGs) against chloramphenicol, SXT, nalidixic acid and streptomycin against which they were found to be resistant by antibiogram analysis in our previous investigation. strAB, sxt, sul2, qace∆1-sul1 were detected by PCR. Genome annotation and identification of ARGs with WGS helped to detect the presence of almG, varG, strA (APH(3'')-Ib), strB (APH(6)-Id), sul2, catB9, floR, CRP, dfrA1 genes. Signatures of resistance determinants and protein domains involved in antimicrobial resistance, primarily, efflux of antibiotics were identified on the basis of 30-100% homology to reference proteins. These domains were predicted to be involved in other metabolic functions on the basis of 100% identity with 100% coverage with reference protein and nucleotide sequences and were predicted to be of a diverse taxonomic origin accentuating the influence of the microbiota on AMR acquisition. Sequence analysis of QRDR (quinolone resistance-determining region) revealed SNPs. Cytoscape v3.8.2 was employed to analyse protein-protein interaction of MDR proteins, MdtA and EmrD-2, with nodes of vital AMR pathways. Vital nodes involved in efflux of different classes of antibiotics were found to be absent in VC1 and VC2 justifying the sensitivity of these strains to most antibiotics. CONCLUSIONS: The study helped to examine the resistome of VC isolated from recent outbreaks to understand the underlying reason of sensitivity to most antibiotics and also to characterize the ARGs in their genome. It revealed that VC is a reservoir of signatures of resistance determinants and serving as precursors for severe AMR crisis in cholera. This is the first study, to our knowledge, which has scrutinized and presented systematically, information on prospective domains which bear the potential of serving as AMR determinants in VC with the help of bioinformatic tools. This pioneering approach may help in the prediction of AMR landfalls and benefit epidemiological surveillance and early warning systems.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Cólera/tratamento farmacológico , Cólera/epidemiologia , Antibacterianos/farmacologia , Estudos Prospectivos , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
6.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366392

RESUMO

The evolutionary relationship between the biofilm lifestyle and antibiotic resistance enzymes remains a subject of limited understanding. Here, we investigate how ß-lactamases affect biofilm formation in Vibrio cholerae and how selection for a biofilm lifestyle impacts the evolution of these enzymes. Genetically diverse ß-lactamases expressed in V. cholerae displayed a strong inhibitory effect on biofilm production. To understand how natural evolution affects this antagonistic pleiotropy, we randomly mutagenized a ß-lactamase and selected for elevated biofilm formation. Our results revealed that biofilm evolution selects for ß-lactamase variants able to hydrolyze ß-lactams without inhibiting biofilms. Mutational analysis of evolved variants demonstrated that restoration of biofilm development was achieved either independently of enzymatic function or by actively leveraging enzymatic activity. Taken together, the biofilm lifestyle can impose a profound selective pressure on antimicrobial resistance enzymes. Shedding light on such evolutionary interplays is of importance to understand the factors driving antimicrobial resistance.


Assuntos
Anti-Infecciosos , Vibrio cholerae , beta-Lactamases/genética , Biofilmes , Vibrio cholerae/genética , beta-Lactamas/farmacologia , Anti-Infecciosos/farmacologia
7.
BMC Genom Data ; 25(1): 18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360573

RESUMO

OBJECTIVE: Vibrio cholerae is an enteric pathogen that poses a significant threat to global health. It causes severe dehydrating diarrheal disease cholera in humans. V. cholerae could be acquired either from consuming contaminated seafood or direct contact with polluted waters. As part of a larger program that assesses the microbial community profile in aquatic systems, V. cholerae strain NB-183 was isolated and characterized using a combination of culture- and whole-genome sequencing-based approaches. DATA DESCRIPTION: Here we report the assembled and annotated whole-genome sequence of a V. cholerae strain NB-183 isolated from a recreational freshwater lake in Ontario, Canada. The genome was sequenced using short-read Illumina systems. The whole-genome sequencing yielded 4,112,549 bp genome size with 99 contigs with an average genome coverage of 96× and 47.42% G + C content. The whole genome-based comparison, phylogenomic and gene repertoire indicates that this strain harbors multiple virulence genes and biosynthetic gene clusters. This genome sequence and its associated datasets provided in this study will be an indispensable resource to enhance the understanding of the functional, ecological, and evolutionary dynamics of V. cholerae.


Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Ontário , Virulência/genética , Água Doce
8.
Int J Infect Dis ; 141: 106955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311027

RESUMO

OBJECTIVES: South Asia remains home to foodborne diseases caused by the Vibrio species. We aimed to compile and update information on the epidemiology of vibriosis in South Asia. METHODS: For this systematic review and meta-analysis, we searched PubMed, Web of Science, EMBASE, and Google Scholar for studies related to vibriosis in South Asia published up to May 2023. A random-effects meta-analysis was used to estimate the pooled isolation rate of non-cholera-causing Vibrio species. RESULTS: In total, 38 studies were included. Seven of these were case reports and 22 were included in the meta-analysis. The reported vibriosis cases were caused by non-O1/non-O139 V. cholerae, V. parahaemolyticus, V. fluvialis, and V. vulnificus. The overall pooled isolation rate was 4.0% (95% confidence interval [CI] 3.0-5.0%) in patients with diarrhea. Heterogeneity was high (I2 = 98.0%). The isolation rate of non-O1/non-O139 V. cholerae, V. parahaemolyticus, and V. fluvialis were 9.0 (95% CI 7.0-10.0%), 1.0 (95% CI 1.0-2.0%), and 2.0 (95% CI: 1.0-3.0%), respectively. Regarding V. parahaemolyticus, O3:K6 was the most frequently isolated serotype. Cases peaked during summer. Several studies reported antibiotic-resistant strains and those harboring extended-spectrum beta-lactamases genes. CONCLUSIONS: This study demonstrates a high burden of infections caused by non-cholera-causing Vibrio species in South Asia.


Assuntos
Doenças Transmitidas por Alimentos , Vibrioses , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Vibrioses/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Diarreia/epidemiologia , Ásia Meridional
9.
mBio ; 15(2): e0229123, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38171003

RESUMO

Many pathogenic Gram-negative bacteria use repeats-in-toxin adhesins for colonization and biofilm formation. In the cholera agent Vibrio cholerae, flagellar-regulated hemagglutinin A (FrhA) enables these functions. Using bioinformatic analysis, a sugar-binding domain was identified in FrhA adjacent to a domain of unknown function. AlphaFold2 indicated the boundaries of both domains to be slightly shorter than previously predicted and assisted in the recognition of the unknown domain as a split immunoglobulin-like fold that can assist in projecting the sugar-binding domain toward its target. The AlphaFold2-predicted structure is in excellent agreement with the molecular envelope obtained from small-angle X-ray scattering analysis of a recombinant construct spanning the sugar-binding and unknown domains. This two-domain construct was probed by glycan micro-array screening and showed binding to mammalian fucosylated glycans, some of which are characteristic erythrocyte markers and intestinal cell epitopes. Isothermal titration calorimetry further showed the construct-bound l-fucose with a Kd of 21 µM. Strikingly, this recombinant protein construct bound and lysed erythrocytes in a concentration-dependent manner, and its hemolytic activity was blocked by the addition of l-fucose. A protein ortholog construct from Aeromonas veronii was also produced and showed a similar glycan-binding pattern, binding affinity, erythrocyte-binding, and hemolytic activities. As demonstrated here with Hep-2 cells, fucose-based inhibitors of this sugar-binding domain can potentially be developed to block colonization by V. cholerae and other pathogenic bacteria that share this adhesin domain.IMPORTANCEThe bacterium, Vibrio cholerae, which causes cholera, uses an adhesion protein to stick to human cells and begin the infection process. One part of this adhesin protein binds to a particular sugar, fucose, on the surface of the target cells. This binding can lead to colonization and killing of the cells by the bacteria. Adding l-fucose to the bacteria before they bind to the human cells can prevent attachment and has promise as a preventative drug to protect against cholera.


Assuntos
Cólera , Toxinas Biológicas , Vibrio cholerae , Animais , Humanos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Aeromonas veronii/metabolismo , Fucose/metabolismo , Adesinas Bacterianas/metabolismo , Polissacarídeos/metabolismo , Toxinas Biológicas/metabolismo , Açúcares/metabolismo , Mamíferos/metabolismo
10.
Nucleic Acids Res ; 52(6): 2961-2976, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214222

RESUMO

Integrons are genetic platforms that acquire new genes encoded in integron cassettes (ICs), building arrays of adaptive functions. ICs generally encode promoterless genes, whose expression relies on the platform-associated Pc promoter, with the cassette array functioning as an operon-like structure regulated by the distance to the Pc. This is relevant in large sedentary chromosomal integrons (SCIs) carrying hundreds of ICs, like those in Vibrio species. We selected 29 gene-less cassettes in four Vibrio SCIs, and explored whether their function could be related to the transcription regulation of adjacent ICs. We show that most gene-less cassettes have promoter activity on the sense strand, enhancing the expression of downstream cassettes. Additionally, we identified the transcription start sites of gene-less ICs through 5'-RACE. Accordingly, we found that most of the superintegron in Vibrio cholerae is not silent. These promoter cassettes can trigger the expression of a silent dfrB9 cassette downstream, increasing trimethoprim resistance >512-fold in V. cholerae and Escherichia coli. Furthermore, one cassette with an antisense promoter can reduce trimethoprim resistance when cloned downstream. Our findings highlight the regulatory role of gene-less cassettes in the expression of adjacent cassettes, emphasizing their significance in SCIs and their clinical importance if captured by mobile integrons.


Assuntos
Vibrio cholerae , Vibrio , Vibrionaceae , Vibrionaceae/genética , Vibrio/genética , Regiões Promotoras Genéticas , Vibrio cholerae/genética , Integrons/genética
11.
Sci Adv ; 10(1): eadj2403, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181072

RESUMO

The parDE family of toxin-antitoxin (TA) operons is ubiquitous in bacterial genomes and, in Vibrio cholerae, is an essential component to maintain the presence of chromosome II. Here, we show that transcription of the V. cholerae parDE2 (VcparDE) operon is regulated in a toxin:antitoxin ratio-dependent manner using a molecular mechanism distinct from other type II TA systems. The repressor of the operon is identified as an assembly with a 6:2 stoichiometry with three interacting ParD2 dimers bridged by two ParE2 monomers. This assembly docks to a three-site operator containing 5'- GGTA-3' motifs. Saturation of this TA complex with ParE2 toxin results in disruption of the interface between ParD2 dimers and the formation of a TA complex of 2:2 stoichiometry. The latter is operator binding-incompetent as it is incompatible with the required spacing of the ParD2 dimers on the operator.


Assuntos
Antitoxinas , Vibrio cholerae , Antitoxinas/genética , Homeostase , Genoma Bacteriano , Óperon , Polímeros , Vibrio cholerae/genética
12.
Nat Microbiol ; 9(1): 251-262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172623

RESUMO

Toxic bacterial modules such as toxin-antitoxin systems hold antimicrobial potential, though successful applications are rare. Here we show that in Vibrio cholerae the cyclic-oligonucleotide-based anti-phage signalling system (CBASS), another example of a toxic module, increases sensitivity to antifolate antibiotics up to 10×, interferes with their synergy and ultimately enables bacterial lysis by these otherwise classic bacteriostatic antibiotics. Cyclic-oligonucleotide production by the CBASS nucleotidyltransferase DncV upon antifolate treatment confirms full CBASS activation under these conditions, and suggests that antifolates release DncV allosteric inhibition by folates. Consequently, the CBASS-antifolate interaction is specific to CBASS systems with closely related nucleotidyltransferases and similar folate-binding pockets. Last, antifolate resistance genes abolish the CBASS-antifolate interaction by bypassing the effects of on-target antifolate activity, thereby creating potential for their coevolution with CBASS. Altogether, our findings illustrate how toxic modules can impact antibiotic activity and ultimately confer bactericidal activity to classical bacteriostatic antibiotics.


Assuntos
Bacteriófagos , Antagonistas do Ácido Fólico , Vibrio cholerae , Antagonistas do Ácido Fólico/farmacologia , Bacteriófagos/genética , Antibacterianos/farmacologia , Vibrio cholerae/genética , Bactérias , Oligonucleotídeos
13.
BMC Microbiol ; 24(1): 33, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254012

RESUMO

Vibrio cholerae, as a natural inhabitant of the marine environment is among the world-leading causes of diarrheal diseases. The present study aimed to investigate the genetic relatedness of Iran 2012-2016 V. cholerae outbreaks with 7th pandemic cholera and to further characterize the non-ST69/non-ST75 sequence types strains by whole-genome sequencing (WGS).Twenty V. cholerae isolates related to 2012, 2013, 2015 and 2016 cholera outbreaks were studied by two genotyping methods - Pulsed-field Gel Electrophoresis (PFGE) and Multi-locus Sequence Typing (MLST)-and by antimicrobial susceptibility testing. Seven sequence types (STs) and sixteen pulsotypes were detected. Sequence type 69 was the most abundant ST confirming that most (65%, 13/20) of the studied isolates collected in Iran between 2012 and 2016 belonged to the 7th pandemic clone. All these ST69 isolates (except two) exhibited similar pulsotypes. ST75 was the second most abundant ST. It was identified in 2015 and 2016. ST438, ST178, ST579 and STs of 983 and 984 (as newfound STs) each were only detected in one isolate. All strains collected in 2016 appeared as distinct STs and pulsotypes indicative of probable different originations. All ST69 strains were resistant to nalidixic acid. Moreover, resistance to nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline was only observed in strains of ST69. These properties propose the ST69 as a unique genotype derived from a separate lineage with distinct resistance properties. The circulation of V. cholerae ST69 and its traits in recent years in Iran proposes the 7th pandemic strains as the ongoing causes of cholera outbreaks in this country, although the role of ST75 as the probable upcoming dominant ST should not be ignored.Genomic analysis of non-ST69/non-ST75 strains in this study showed ST579 is the most similar ST type to 7th pandemic sequence types, due to the presence of wild type-El Tor sequences of tcpA and VC-1319, VC-1320, VC-1577, VC-1578 genes (responsible for polymyxin resistance in El Tor biotype), the traits of rstC of RS1 phage in one strain of this ST type and the presence of VPI-1 and VSP-I islands in ST579 and ST178 strains. In silico analysis showed no significant presence of resistance genes/cassettes/plasmids within non-ST69/non-ST75 strains genomes. Overall, these data indicate the higher susceptibility of V. cholerae non-ST69/non-ST75 strains in comparison with more ubiquitous and more circulating ST69 and ST75 strains.In conclusion, the occurrence of small outbreaks and sporadic cholera cases due to V. cholerae ST69 in recent years in Iran shows the 7th pandemic strains as the persistent causes of cholera outbreaks in this country, although the role of ST75 as the second most contributed ST should not be ignored. The occurrence of non-ST69/non-ST75 sequence types with some virulence factors characteristics in border provinces in recent years is noteworthy, and further studies together with surveillance efforts are expected to determine their likely route of transport.


Assuntos
Cólera , Vibrio cholerae , Humanos , Cólera/epidemiologia , Vibrio cholerae/genética , Tipagem de Sequências Multilocus , Irã (Geográfico)/epidemiologia , Ácido Nalidíxico , Pandemias , Surtos de Doenças
16.
Nucleic Acids Res ; 52(2): 708-723, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000366

RESUMO

Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.


Assuntos
Proteínas de Bactérias , Replicação do DNA , Proteína Reguladora de Resposta a Leucina , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo
17.
Protein Expr Purif ; 215: 106403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37977515

RESUMO

Toxin-antitoxin (TA) systems are small operons that are omnipresent in bacteria and archaea with suggested roles in stabilization of mobile genetic elements, bacteriophage protection, stress response and possibly persister formation. A major bottleneck in the study of TA toxins is the production of sufficient amounts of well-folded, functional protein. Here we examine alternative approaches for obtaining the VcParE2 toxin from Vibrio cholerae. VcParE2 can be successfully produced via bacterial expression in presence of its cognate antitoxin VcParD2, followed by on-column unfolding and refolding. Alternatively, the toxin can be expressed in Spodoptera frugiperda (Sf9) insect cells. The latter requires disruption of the VcparE2 gene via introduction of an insect cell intron. Both methods provide protein with similar structural and functional characteristics.


Assuntos
Antitoxinas , Toxinas Bacterianas , Vibrio cholerae , Toxinas Bacterianas/genética , Antitoxinas/genética , Antitoxinas/metabolismo , Vibrio cholerae/genética , Óperon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
ACS Synth Biol ; 13(1): 328-336, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085703

RESUMO

Synthetic perturbation of gene expression is central to our ability to reliably uncover genotype-phenotype relationships in microbes. Here, we present a novel transcription activation strategy that uses the Vibrio cholerae CRISPR-Associated Transposon (CAST) system to selectively insert promoter elements upstream of genes of interest. Through this strategy, we show robust activation of both recombinant and endogenous genes across the Escherichia coli chromosome. We then demonstrate the precise tuning of expression levels by exchanging the promoter elements being inserted. Finally, we demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant phenotypes in E. coli.


Assuntos
Escherichia coli , Vibrio cholerae , Ativação Transcricional/genética , Escherichia coli/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Vibrio cholerae/genética , Regiões Promotoras Genéticas/genética , Sistemas CRISPR-Cas/genética , Elementos de DNA Transponíveis/genética
19.
mSystems ; 9(1): e0085123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38112429

RESUMO

Artemisinin (ARS) displayed bactericidal activity against Vibrio cholerae. To assess the mechanistic details of its antibacterial action, we have isolated V. cholerae mutants with enhanced ARS resistance and identified a gene (VCA0767) whose loss-of-function resulted in the ARS resistance phenotypes. This gene (atrR) encodes a TetR family transcriptional regulator, and its deletion mutant displayed the reduction in ARS-induced ROS formation and DNA damage. Transcriptomic analysis revealed that the genes encoding a resistance-nodulation-cell division (RND) efflux pump operon (vexRAB) and the outer membrane component (tolC) were highly upregulated in the artR mutant, suggesting that AtrR might act as a negative regulator of this operon and tolC. Gene deletion of vexR, vexB, or tolC abrogated the ARS resistance of the atrR mutant, and more importantly, the ectopic expression of VexAB-TolC was sufficient for the ARS resistance, indicating that the increased expression of the VexAB-TolC efflux system is necessary and sufficient for the ARS resistance of the atrR mutant. The cytoplasmic accumulation of ARS was compromised in the vexBtolC mutant, suggesting that the VexAB-TolC might be the primary efflux system exporting ARS to reduce its toxicity inside of the bacterial cells. The atrR mutant displayed resistance to erythromycin as well in a VexR-dependent manner. This result suggests that AtrR may act as a global regulator responsible for preventing intracellular accumulation of toxic chemicals by enhancing the RND efflux system.IMPORTANCEDrug efflux protein complexes or efflux pumps are considered as the major determinants of multiple antimicrobial resistance by exporting a wide range of structurally diverse antibiotics in bacterial pathogens. Despite the clinical significance of the increased expression of the efflux pumps, their substrate specificity and regulation mechanisms are poorly understood. Here, we demonstrated that VexAB-TolC, a resistance-nodulation-cell division (RND) efflux pump of V. cholerae, is responsible for the resistance to artemisinin (ARS), an antimalarial drug with bactericidal activity. Furthermore, we newly identified AtrR, a TetR family repressor, as a global regulator for VexRAB and the common outer membrane channel, TolC, where VexR functions as the pathway-specific regulator of the vexAB operon. Our findings will help improve our insight into a broad range of substrate specificity of the VexAB-TolC system and highlight the complex regulatory networks of the multiple RND efflux systems during V. cholerae pathogenesis.


Assuntos
Artemisininas , Vibrio cholerae , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Transporte Biológico , Artemisininas/metabolismo
20.
Front Cell Infect Microbiol ; 13: 1290508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053530

RESUMO

Adaptation to oxidative stress is critical for survival of Vibrio cholerae in aquatic ecosystems and hosts. DegS activates the σE envelope stress response. We have previously revealed that DegS may be involved in regulating the oxidative stress response. In this study, we demonstrated that deletion of the degS gene attenuates the antioxidant capacity of V. cholerae. In addition, our results further revealed that the regulation of antioxidant capacity by DegS in V. cholerae could involve the cAMP-CRP complex, which regulates rpoS. XthA is an exonuclease that repairs oxidatively damaged cells and affects the bacterial antioxidant capacity. qRT-PCR showed that DegS, σE, cAMP, CRP, and RpoS positively regulate xthA gene transcription. XthA overexpression partially compensates for antioxidant deficiency in the degS mutant. These results suggest that DegS affects the antioxidant capacity of V.cholerae by regulating xthA expression via the cAMP-CRP-RpoS pathway. In a mouse intestinal colonization experiment, our data showed that V.cholerae degS, rpoE, and rpoS gene deletions were associated with significantly reduced resistance to oxidative stress and the ability to colonize the mouse intestine. In conclusion, these findings provide new insights into the regulation of antioxidant activity by V.cholerae DegS.


Assuntos
Vibrio cholerae , Animais , Camundongos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Antioxidantes/metabolismo , Peptídeo Hidrolases/metabolismo , Ecossistema , Proteínas de Bactérias/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Metaloendopeptidases/genética , Estresse Oxidativo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...